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A B S 1 R A ( I   Ocean data assimilation has matured to the point that observations are 

now routinely combined with model forecasts to produce a variety of ocean products. 

Approaches to ocean data assimilation vary widely both in terms of the sophistication 

of the method and the observations assimilated, and also in terms of specification of 

the forecast error covariances, model biases, observation errors, and quality-control 

procedures. In this paper, we describe some of the ocean data assimilation systems 

that have been developed within the Global Ocean Data Assimilation Experiment 

(GODAE) community. We discuss assimilation methods, observations assimilated, 

and techniques used to specify error covariances. In addition, we describe practical 

implementation aspects and present analysis performance results for some of the 

analysis systems. Finally, we describe plans for improving the assimilation systems in 

the post-GODAE time period beyond 2008. 

INTRODUC riON 

Ocean data assimilation is a math- 

ematically rigorous process of combining 

ocean observations and ocean models to 

extract the most important information 

from relatively sparse and incomplete 

observations of time-varying ocean 

circulation. The main goals of ocean 

data assimilation are to improve our 

understanding of ocean circulation and 

monitor and predict circulation on all 

relevant temporal and spatial scales. 

Ocean data assimilation products devel- 

oped during the Global Ocean Data 

Assimilation Experiment (GODAE) 

are used to: (1) initialize ocean models 

using all available observations through 

sequential approaches for forecasting, 

and (2) synthesize observations with 

ocean models to obtain dynamically 

consistent estimates of changing ocean 

state. Ocean data assimilation is needed 

because ocean models are likely to have 

errors due to deficiencies in model 

physics, grid resolution, lateral boundary 

conditions, or atmospheric forcing. One 

important impact of data assimilation is 

to counter the tendency of ocean models 

to drift away from reality. 

Although major challenges remain, 

substantial progress has been made 

during GODAE in developing ocean 

data assimilation systems. GODAE 

assimilation systems are now producing 

ocean forecasts and ocean state estimates 

on a routine basis, some in near-real 

time. GODAE systems represent large 

investments by many national groups 

that are in the process of transitioning to 

sustained assimilation activities for both 

scientific and operational purposes. This 

paper summarizes the status of ocean 

data assimilation systems developed in 

support of GODAE activities. We focus 

on the most important aspects of the 

GODAE assimilation systems without 

resorting to the mathematical details. For 

each of the GODAE systems discussed, 

we briefly describe: (1) the data assimi- 

lation method along with practical 

aspects of implementing the method; 

(2) the observing systems assimilated 

and forecast error covariances, including 

specification of the background, obser- 

vation, and multivariate aspects of the 

assimilation; (3) performance results of 

the assimilation; and (4) future plans in 

the post-GODAE time period (beyond 

2008). Note that the modeling and 

operational aspects of the assimilation 

systems are discussed elsewhere in this 

special issue (see Dombrowsky et al. and 

Hurlburt et al.), and are not repeated 

here. We provide an extensive reference 

list for those readers who seek more 

detail on one or more of the systems 

described in this paper. 

GODAE systems discussed include: 

the BLUElink> Ocean Data Assimilation 

System (BODAS), operational at the 

Australian Bureau of Meteorology; 

the near-real-time Estimating the 

Circulation and Climate of the Ocean 
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Table 1. Data assimilation methods used by CODAE systems 

System Name            Country                 Data Assimilation Method Reference 

BODAS Australia Ensemble Optimal Interpolation Oke et al., 2008 

ECCO-JPL USA Kalman filter and smoother Fukumori, 2002 

FOAM UK Analysis Correction Martin et al., 2007 

Mercator France Static SEEK filter Brasseur et al., 2005 

MOVE/MRI.COM Japan Multivariate 3DVAR Fujii and Kamachi, 2003 

NCODA USA Multivariate Optimal Interpolation Cummings, 2005 

NEMOVAR European Union Multivariate Incremental 3DVAR Weaver et al., 2005 

TOPAZ Norway Ensemble Kalman filter Evensen, 2006 

(ECCO) system, operational at the Jet 

Propulsion Laboratory; the Forecast 

Ocean Assimilation Model (FOAM), 

operational at the UK Met Office; 

Mercator, operational in France; 

the Multivariate Ocean Variational 

Estimation/Meteorological Research 

Institute Community Ocean Model 

(MOVE/MRI.COM), operational at 

the Japan Meteorological Agency; the 

Navy Coupled Ocean Data Assimilation 

(NCODA) system, operational at 

US Navy oceanography centers; 

Nucleus for European Modeling of the 

Ocean VARiational data assimilation 

(NEMOVAR), planned for research and 

operations at several European institu- 

tions; and Towards an Operational 

Prediction system for the North Atlantic 

European coastal Zones (TOPAZ), 

operational exploitation of which has 

been transitioned to the Norwegian 

meteorological services. 

Mi I HODS 

A variety of methods exist for assimi- 

lating observations into ocean models, 

and GODAE systems reflect this 

diversity in methodology. GODAE 

assimilation methods range from rela- 

tively simple schemes, such as Analysis 

Correction and Optimal Interpolation, 

to more sophisticated schemes, such 

as variational and ensemble tech- 

niques. Table 1 lists the assimilation 

methods used in GODAE systems. 

Detailed descriptions of GODAE data 

assimilation schemes can be found in 

the references shown in table. (See, for 

example, Brasseur (2006) and Wunsch 

(2006) for general discussions.) Most 

GODAE systems are run in near-real 

time for ocean monitoring and fore- 

casting purposes, while some systems 

are exclusively executed for times in the 

past in what is referred to as "reanalysis 

mode." The basic data inputs into any 

assimilation system are the innova- 

tions. Innovations are the differences 

between the observations and the model 

James Cummings Qamei.cummings@nrlmry.navy.mil) is Oceanographer, Naval Research 

Laboratory, Monterey, California, USA. Laurent Bertino is Leading Scientist, Modeling 

and Data Assimilation Croup, Nansen Environmental and Remote Sensing Center, 

Bergen, Norway. Pierre Brasseur is Research Scientist, Conseil National de la Recherche 

Scientifique I Laboratoire des Ecoulements Geophysiques et Industriels (CNRS/LECI), 

Grenoble, France. Ichiro Fukumori is Group Supervisor, Ocean Circulation Division, jet 

Propulsion Laboratory, Pasadena, California, USA. Masafumi Kamachi is Head, Second 

Laboratory, Oceanographic Research Department, Meteorological Research Institute, 

Tsukuba, Japan. Matthew J. Martin is Ocean Data Assimilation Scientist, Met Office, 

Exeter, UK. Kristian Mogensen is Scientist, European Centre for Medium-Range Weather 

Forecasting Reading UK. Peter Oke is Research Scientist, Commonwealth Scientific and 

Industrial Research Organisation, Hobart, Tasmania, Australia. Charles Emmanuel Testut 

is Scientist, Mercator Ocian, Toulouse, France. Jacques Verron is Directeur de Recherche, 

Centre National de la Recherche Scientifique, Laboratoire des Ecoulements Geophysiques 

et Industriels, Grenoble, France. Anthony Weaver is Senior Researcher, Centre Europeen de 

Recherche et de Formation Avancee en Calcul Scientifique, Toulouse, France. 
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Table 2: Observing systems assimilated by each of the CODAE systems 

System 
fTil'HfrHH J^'ITT'^B 

Surface Temperature 

BODAS 
Along-track data from satellite 
altimeters, coastal tide gauges 

Argo, CTD, XBT, and 
moorings 

Satellite data 

ECCO-JPL 
Along-track data from TOPEX/ 
Poseidon and Jason-1 

Argo, CTD, XBT, and 
moorings 

Reynolds SST analysis 

FOAM 
Along-track data from satellite 
altimeters 

Argo, CTD, XBT, and 
moorings 

In situ and satellite 
data 

OSI-SAF sea ice analysis 

Mercator 
Along-track data from satellite 
altimeters 

Argo, CTD, XBT, and 
moorings 

NOAA RTG SST 
analysis 

MOVE/MRI.COM 
Along-track data from all 
satellite altimeters 

Argo, CTD, XBT, and 
moorings 

MCDSST SST analysis MGDSST sea ice analysis 

NCOOA 
Along-track data from satellite 
altimeters 

Argo, CTD, XBT, 
moorings, drifting 
buoys, and gliders 

In situ and satellite 
data 

SSM/I and SSMIS sea ice 
concentration 

NEMOVAR 
Along-track data from satellite 
altimeters 

Argo, CTD, XBT, and 
moorings 

In situ and satellite 
data 

TOPAZ 
Gridded sea level anomaly 

maps 
Argo Reynolds SST analysis 

AMSR sea ice concentration 

and sea ice drift products 
from CERSAT 

predictions of the observed variables. 

Innovations are a measure of model 

error at the update cycle interval. 

Correspondingly, the basic data outputs 

of any assimilation system are the 

residuals. Residuals are the differences 

between the analyzed fields and the 

observed variable after the assimilation. 

Residuals measure the fit of the analysis 

to the observations. 

OBSERVATIONS ASSIMILATED 

The main observations assimilated by 

the GODAE systems are the sea level 

anomaly (SLA) data provided by satel- 

lite altimeters; subsurface temperature 

and salinity data from Argo floats, 

moored and drifting buoys, expendable 

bathythermograph (XBT) temperature, 

and conductivity-temperature-depth 

(CTD) recorders; in situ and satel- 

lite sea surface temperature data; and 

satellite sea ice concentration and 

drift data. Table 2 lists the observa- 

tions assimilated by each GODAE 

system based on analysis variable and 

observing system. Observations from 

satellite altimeters and the various in 

situ subsurface measuring systems are 

assimilated by all of the systems, with 

BODAS also assimilating SLA from tide 

gauge data. A number of the systems 

assimilate sea surface temperature 

(SST) analyses from various sources 

that have already combined the SST 

data into a gridded product, such as the 

US National Oceanic and Atmospheric 

Administration (NOAA) real-time 

global (RTG) and the Japanese Merged 

Global Daily SST (MGDSST) analyses. 

Other systems directly assimilate orbital 

satellite SST retrievals along with in 

situ SST observations from ships and 

buoys. NCODA assimilates sea ice 

concentration data from the Special 

Sensor Microwave Imager (SSM/I) 

and Special Sensor Microwave Imager/ 

Sounder (SSMIS) satellite series. Two 

of the systems assimilate gridded 

sea ice concentration fields from the 

French Ocean and Sea Ice Satellite 

Application Facility (OSI-AF) and 

Japanese MGDSST. TOPAZ assimilates 

sea ice concentration retrievals from 
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the Advanced Microwave Scanning 

Radiometer (AMSR) and sea ice drift 

data from the Center for Satellite 

Exploitation and Research (CERSAT). 

FRROR COVARIANCES 

A crucial aspect of all ocean data 

assimilation schemes is the way in 

which the background and observation 

error covariance matrices are specified, 

or the way in which the model and/or 

observations are perturbed in the case 

of ensemble schemes. The background 

error covariance matrix determines how 

information is spread from the observa- 

tions to the model grid points and model 

levels. The background error covari- 

ances should also ensure that observa- 

tions of one model variable produce 
dynamically consistent corrections in 
other model variables. Observation 

errors are typically assumed to be 

uncorrelated and consist of two parts: 

a measurement error and a representa- 

tion error. Measurement errors reflect 

the background error, determines the 

relative weight given to the observation 

in the analysis. The ratio of the observa- 

tion error to the background error is 

expected to be close to unity if the assim- 

ilation system fits the data to within 

prescribed observation error limits and 

the background errors are consistent 

with the model-data errors. 

Gaussian or second-order autore- 

gressive (SOAR) functions are used to 

model the background error covari- 

ances in many of the GODAE systems 

(FOAM, MOVE/MRI.COM, NCODA, 

NEMOVAR). FOAM assumes there 

are two main sources of model forecast 

error: one due to errors in the forcing 

of the model by atmospheric fields, 

and the other due to model dynamical 

errors. The background error covariance 
matrix in FOAM, therefore, is specified 

to be the combination of two SOAR 

functions, each with their associated 

variance and correlation length scale 

(see Martin et al., 2007, for details). The 

OCEAN DATA ASSIMILATION HAS MATURED TO 

THE POINT THAT OBSERVATIONS ARE NOW ROUTINELY 

COMBINED WITH MODEL FORECASTS TO PRODUCE A 

VARIETY OF OCEAN PRODUCTS. 

what is known about the accuracy of 

the instruments and the ambient condi- 

tions in which the instruments operate. 

Representation errors, on the other 

hand, are model dependent and poorly 

known. Note that the magnitude of the 

observation error, in combination with 

MOVE/MRI.COM analysis scheme 

uses anisotropic and inhomogeneous 

horizontal Gaussian decorrelation scales 

and vertically coupled temperature- 

salinity (T-S) empirical orthogonal 

function (EOF) modes to form the 

background error covariances (see 

Fujii and Kamachi, 2003, for details). 

NCODA uses a SOAR function where 

the horizontal correlation length scales 

vary with location and are specified 

as the first baroclinic Rossby radius of 

deformation (Chelton et al., 1998) multi- 

plied by a scaling factor. (The scaling 

is on the order of 1.3 to 2.8, with small 

latitude dependence). Flow-dependence 

is introduced in the analysis by adjusting 

the horizontal correlations with a tensor 

computed from forecast model SLA 

gradients. The flow-dependent tensor 

tends to spread innovations along rather 

than across the SLA contours, which 

are used as a proxy for the circulation 

field. Vertical correlation length scales 

in NCODA evolve from one analysis 

cycle to the next and are computed from 
forecast vertical density gradients using 
a change in density mixing criterion. 

In this way, vertical length scales vary 

with depth and are large (small) when 

the water column stratification is weak 

(strong) (see Cummings, 2005, for 

details). In NEMOVAR, the model state 

variables in the background error covari- 

ance are transformed to new variables 

whose background errors are approxi- 

mately uncorrelated using analytical 

balance relationships (T-S, hydrostatic, 

geostrophic, and dynamic height rela- 

tions). By transforming variables in this 
way, the background-error covariance 

matrix can be assumed to be univariate 

with respect to the transformed vari- 

ables. The univariate correlations are 

then modeled implicitly using an aniso- 

tropic diffusion operator. The correlation 

functions implied by the diffusion model 

are approximately Gaussian (see Weaver 

et al., 2005, for details). 

In other GODAE systems (BODAS, 

Mercator), time series from prior 
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model integrations are used to provide 

background error covariance informa- 

tion. BODAS uses an ensemble of long 

model runs without assimilation to form 

anomaly fields that have scales and vari- 

ability that resemble mesoscale ocean 

each other, the two error sources are 

empirically estimated in observation 

space from auto- and cross-covariances 

among the observations and their model 

simulation counterpart (see Fukumori, 

2002, for details). 

THE MAIN GOALS OF OCEAN DATA ASSIMILATION 

ARE TO IMPROVE OUR UNDERSTANDING OF OCEAN 

CIRCULATION AND MONITOR AND PREDICT 

CIRCULATION ON ALL RELEVANT TEMPORAL 

AND SPATIAL SCALES. 

circulation. The background error cova- 

riances are then derived directly from 

this ensemble of intraseasonal anoma- 

lies (see Oke et al., 2008, for details). 

Mercator uses a three-dimensional 

multivariate EOF decomposition of the 

model variability, followed by a trunca- 

tion of the EOF series, to represent the 

background error covariances. Model 

variability at the time scale of a week 

is estimated from ensembles of model 

anomalies using an a priori interannual 

simulation as a reference (see Testut 

et al., 2003, for details). 

TOPAZ is unique in its use of an 

ensemble of model and analysis esti- 

mates to evolve the covariances in both 

space and time. The TOPAZ model 

ensemble provides both multivariate and 

flow-dependent background error cova- 

riances (see Evensen, 2006, for details). 

ECCO uses the method of covariance 

matching (Fu et al., 1993) to estimate 

both model and data errors. By assuming 

that errors of the data and those of a 

model simulation are independent of 

PRACTICAL ASPECTS OF 

IMPLEMENTATION 

The assimilation of millions of observa- 

tions into high-resolution, nonlinear 

numerical models of ocean circulation 

is far from trivial. One of the major 

difficulties in ocean data assimilation is 

finding practical algorithms that make 

the solution computationally affordable 

while maintaining the accuracy of the 

solution in terms of the fit of the analysis 

to the observations within the speci- 

fied error characteristics. In this section 

we describe some practical aspects 

of implementing GODAE ocean data 

assimilation systems. 

Cycling and Time Windows 

The GODAE systems use different strate- 

gies for cycling and for specifying the 

time window of observations used in 

the assimilation. For example, BODAS 

runs on a seven-day cycle in reanalysis 

mode and on a three- to four-day cycle 

for real-time operational forecasts, but 

always uses an observation time window 

of 11 days that yields global coverage 

for all data sets assimilated (altimetry, 

SST, and Argo). The Mercator and 

TOPAZ assimilation systems are based 

on a seven-day assimilation cycle, while 

FOAM and NCODA are run on a daily 

cycle using synoptic time windows for 

the observations. 

Quality Control 

Various ocean data quality-control 

procedures are used by GODAE 

systems to ensure that erroneous data 

are not assimilated. Some systems 

use externally processed observations 

(Mercator uses data processed by the 

Coriolis data center at Ifremer), while 

other systems have developed their own 

automatic quality-control procedures, 

such as those used by NCODA, FOAM 

(Ingleby and Huddleston, 2007), and 

MOVE/MRI.COM (Fujii et al., 2005). 

For systems executed in reanalysis mode, 

the observational data have often under- 

gone more extensive delayed-mode, 

scientific quality-control procedures that 

are not available in near-real time. 

Model Biases 

One assumption in the data assimilation 

methods used by the GODAE systems is 

that the observations and the model are 

free of systematic error. This assumption 

is not valid in practice, and systematic 

errors in both the models and the obser- 

vations can cause significant problems 

in the assimilation and in the skill of the 

subsequent forecast. In the ECCO near- 

real-time system, temporal anomalies of 

sea level and in situ temperature profiles 

relative to their respective time-means 

are employed in the assimilation and the 

time-mean errors of the model are not 

corrected. In FOAM, schemes have been 
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developed to deal with biases, including 

pressure corrections (Bell et al., 2004), 

systematic errors in the altimeter assimi- 

lation (Lea et al., 2008), and biases in 

the various sources of satellite SST data 

(Stark et al., 2007). NCODA makes use 

of satellite SST bias corrections from 

the data providers, and performs a bias 

correction on salinity measurements 

from Argo, which are known to drift 

with time as floats age. 

Initialization 

All GODAE systems employ multivariate 

corrections to the model state vector 

through statistical relationships, dynam- 

ical balance equations, or combinations 

of the two. A majority of GODAE 

systems (BODAS, FOAM, Mercator, 

MOVE/MRI.COM, NCODA, and 

NEMOVAR) initialize the model for the 

next forecast using the incremental anal- 

ysis updating scheme (IAU; Bloom et al., 

1996). This approach was found not to 

be necessary in the TOPAZ system. 

point. However, while reducing the 

computational load, localization can also 

have a negative impact by degrading 

the dynamical balance of the analysis 

fields; thus, it must be implemented with 

care. BODAS and Mercator divide the 

model domain into subdomains where 

the analysis is computed independently. 

In BODAS, observations are assimilated 

within a subdomain plus a surrounding 

halo region, which results in seamless 

analyses from adjoining subdomains. In 

Mercator, elliptical influence radii are 

defined a priori from SLA satellite obser- 

vations with axes of about 200-500 km, 

which are on the order of several Rossby 

radii of deformation at mid latitudes. 

NCODA uses overlapping analysis 

volumes that are dynamically created 

based on observation density and back- 

ground correlation length scales. A total 

of eight volume solutions are obtained 

for each analysis grid point with volume 

size encompassing up to eight correla- 

tion length scales. This combination 

ALTHOUGH MAJOR CHALLENGES REMAIN, 

SUBSTANTIAL PROGRESS HAS BEEN MADE 

DURING GODAE IN DEVELOPING OCEAN DATA 

ASSIMILATION SYSTEMS. 

Efficiency 

A number of techniques are used to 

improve assimilation efficiency. Many 

GODAE systems use a form of localiza- 

tion to reduce the need to consider 

distant observations (where the correla- 

tion is essentially zero) in determining 

the analysis at a particular model grid 

of overlapping volumes, and a large 

number of correlation length scales 

within a volume, produces smooth anal- 

ysis increments and reduces the depar- 

ture from geostrophy that occurs when 

interpolating different analysis solutions. 

TOPAZ applies localization by selecting 

the 50 nearest observations (respectively 

profiles) within a radius of 700 km for 

satellite data and 1000 km for Argo data. 

ECCO employs several approxi- 

mations to reduce the estimations 

computational requirements pertaining 

to derivation of the model state error 

covariance matrix. These approxima- 

tions include evaluating independent 

errors separately from one another 

(partitioning; Fukumori, 2002), esti- 

mating only the most dominant modes 

of the errors (state reduction; Fukumori 

and Malanotte-Rizzoli, 1995), and 

deriving and using the asymptotic limit 

of the time-evolving error covariances 

(Fukumori et al., 1993). 

The FOAM, MOVE/MRI.COM, 

and NEMOVAR analysis systems do 

not localize but rather invoke iterative 

methods to solve the global minimiza- 

tion problem. The Analysis Correction 

scheme in FOAM uses a fixed number 

of 10 iterations to reduce the compu- 

tational burden of solving the optimal 

interpolation equation. This number of 

iterations was determined by performing 

sensitivity experiments and assessing 

the increase in accuracy obtained by 

increasing the number of iterations. 

The three-dimensional variational 

methods used in MOVE/MRI.COM 

and NEMOVAR use preconditioning 

methods to improve the conver- 

gence properties of the minimiza- 

tion (for details see Fujii, 2005, and 

Tshimanga et al., 2008). 

ASSIMILATION PERFORMANCE 

In this section, we provide examples of 

GODAE system assimilation perfor- 

mance. Note that additional perfor- 

mance aspects of the GODAE systems 

are discussed elsewhere in this special 

issue (see Hernandez et al.). 
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BODAS 

Oke et al. (2008) present a compre- 

hensive assessment of BODAS when 

applied for version 1.5 of the BLUElink> 

ReANalysis (BRAN; a multiyear, data- 

assimilating model run). Through a 

series of comparisons with both assimi- 

lated and withheld observations, Oke 

et al. (2008) show that, around Australia, 

BRAN fields are typically within 

4-10 cm and 0.4- 1°C of observed SLA 

and SST, respectively; within 1°C and 

0.15 psu of observed subsurface T and S, 

respectively; and within about 0.2 m s ' 

of observed near-surface currents from 

surface drifting buoys. Recent assess- 

ments of the operational BLUElink> 

system shows similar performance 

to BRAN. Figure 1 is an example of 

BODAS applied to version 2.1 of BRAN 

showing a series of comparisons between 

six-day composite Advanced Very High 

Resolution Radiometer (AVHRR) SST 

fields and five-day averaged model 

SST fields. Overlaid on the BRAN SST 

fields are five-day Lagrangian trajec- 

tories derived from the time-varying 

surface velocities computed by BRAN. 

BRAN shows good agreement with the 

observed features. This result demon- 

strates that the Ensemble Optimal 

Interpolation (EnOI) system used by 

BODAS, including error estimates 

therein, while not optimal, is capable of 

constraining an eddy-resolving model in 

this highly energetic region. 

IS 
SST (Deg C> 

Figure 1. A series of comparisons between six-day composite Advanced Very High Resolution Radiometer sea surface temperature (SST) (columns 1, 3. 

and 5) and five-day averaged SST in the Tasman Sea, from BRAN2p1 with five-day Lagrangian trajectories from reanalyzed surface velocities overlaid 

(columns 2, 4. and 6). 
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Figure 2. Time series of the variance of ECCO-JPL model-data sea level anomaly differ- 

ences: simulation (black), Kalman filter (red), and RTS smoother (blue). The smoother 

variances are nearly indistinguishable from the filter, whereas the simulation residuals are 

substantially larger. 
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Figure 3. RMS errors in (a) temperature (°C) and (b) salinity (PSU) analyses compared to 

in situ profile observations before they are assimilated, averaged between January 2001 

jnd JLily 200S over the North Atlantic model domain. Results are shown for runs that 

assimilated all in situ data (solid) and all in situ data except Argo (dotted), and for no data 
assimilation (dashed). 

ECCO 

Figure 2 illustrates the fidelity of the 

near-real-time analysis in terms of vari- 

ance of model-data differences in SLA. 

The Kalman filter estimate generally 

has a smaller model-data difference 

than does a model simulation uncon- 

strained by the observations. Remaining 

model-data differences are largely due 

to mesoscale variability not resolved by 

the model (representation error) and 

are comparable to theoretical expecta- 

tions based on formal uncertainty 

estimates. The smoothed estimate 

shown is a model simulation forced by 

winds estimated by the approximate 

Rauch-Tung-Striebel smoother. On 

the one hand, due to approximations 

in the smoother in addition to those in 

the filter, model-data differences in this 

smoothed estimate are slightly larger 

than those in the filtered result. On the 

other hand, unlike the filtered result, 

the temporal evolution of this smoothed 

estimate is physically consistent, owing 

to the explicit estimation of model error 

sources (i.e., inaccuracies of winds in this 

particular example; Fukumori, 2006). 

This consistency result permits studies of 

causal mechanisms underlying observed 

changes in the ocean, such as in mixed- 

layer temperature and near-surface water 

mass characteristics (e.g., Kim et al., 

2007; Wang et al., 2004). 

FOAM 

Figure 3 shows the impact of assimila- 

tion of in situ profile data in the FOAM 

1/9° North Atlantic model for a set of 

five-year integrations. The temperature 

and salinity errors are significantly 

reduced when assimilating the in situ 

data. When no Argo data are assimilated, 

the salinity errors are marginally worse 
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than with no data assimilated in the top 

400 m of the water column, probably 

due to the temperature-only assimila- 

tion disrupting the density structure in 

the model. These statistics show both 

the importance of the Argo data and the 

beneficial impact of data assimilation on 

the model fields. 

Mercator 

Figure 4 illustrates the quality of the 

control for SST in the assimilation from 

a global 1/4° hindcast simulation over the 

period 2002-2008. Comparison with the 

zonal temporal evolution of the RTG SST 

at 3°N shows how the assimilation repro- 

duces well the observed signal in terms 

of magnitude and phase in regions char- 

acterized by Tropical Instability Wave 

physical processes. 

Figure 4. Hovmoller diagrams of sea surface temperature (SST) anomalies at 3°N over the period 

2002-2008 for RTC-SST assimilated data (left) and analyzed model SST (right) from a Mercator 

hindcast simulation on the global '/«' configuration. 

MOVE/MRI 

An assimilation experiment (analysis/ 

reanalysis) was conducted from January 

1948 to December 2007 for the global 

and North Pacific systems, and from 

January 1985 to September 2007 for the 

western North Pacific system. A total 

of 138 cases of prediction experiments 

for Kuroshio path variability south 

of Japan were also conducted from 

February 1993 to July 2004. Ninety-day 

lead time predictions showed realistic 

predictability (Usui et al., 2008). In the 

western North Pacific, there are two 

shallow water masses: the warm, salty 

Kuroshio water in the subtropical gyre 

and the cold, fresh Oyashio water in the 

subpolar gyre. These two water masses 

merge and produce many mesoscale 

eddies and additional water masses 

at the boundary of the subtropical 

and subpolar gyres in the area east 

of Tohoku. Figure 5 shows observed 

temperature and salinity distributions 

along 144°E from Japan Meteorological 

Agency line measurements. The warm 

and saline Kuroshio water and its frontal 

structure are clearly seen south of 36°N, 

with a Kuroshio warm water eddy 

between 38°N and 39°N. The Kuroshio 

warm water eddy is surrounded by 

cold Oyashio water. Salinity distribu- 

tions also highlight the Kuroshio warm 

eddy structure with salty eddy water 

surrounded by Oyashio freshwater. The 

right panel shows observed salinity 

distributions along 137°E from Japan 

Meteorological Agency line measure- 

ments. It shows typical North Pacific 

Intermediate Water (NPIW) character- 

ized by a minimum salinity core near 

600-800-m depth. The depth distri- 

bution and lateral extent of NPIW is 

important for understanding Pacific 

decadal oscillations. The assimilation 

reproduces the salinity distribution of 

NPIW quite well. 

NCODA 

Performance of the NCODA analysis 

system is routinely assessed by examina- 

tion of model innovation and analysis 

residual time series from the cycling 

assimilation. Residual root mean square 

(RMS) errors are consistently less than 

innovation RMS errors, indicating that 

the analysis is making effective use of the 

observations, and residual mean errors 

are indistinguishable from zero for all 

analysis variables, indicating an unbiased 

analyzed state. Consistency of the speci- 

fied background and observation error 

variances with the innovation vector is 

monitored each update cycle by the Jmin 

diagnostic (Daley and Barker, 2001). 
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Figure S. Comparison of 

temperature and salinity 

distribution along 144°E (a-d) 

and 165'E (e-f). 

(a) Temperature (assimilation). 

(b) Salinity (assimilation). 

(c) Temperature (independent 

observation). 

(d) Salinity (independent 

observation). 

(e) Salinity (assimilation). 

(f) (Independent observation). 

ST = subtropical water. 

SP = subpolar water. 

(a) 
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Figure 6. J    diagnostics from the Atlantic basin of the global HYCOM/NCODA assimilation. 

I     has been computed on the basis of (a) Analysis variable: three-dimensional temperature 

(blue), sea surface temperature (red), sea level anomaly (green) from June 29, 2007, through 

February 23, 2008. (b) Temperature profile observing systems: XBT (brown), fixed buoys 

(magenta), drifting buoys (yellow), altimeter-derived synthetic profiles (green), CTD (red), 

and Argo floats (blue) from December 23, 2007, through February 23, 2008. Uncertainty of 

the Jmm diagnostic at each update cycle is shown as a vertical black line. 

When normalized by the number of 

observations assimilated, the expected 

value of the! , is one. If J    << 1.0, either 
'min 'mm 

the observation or background errors 

are specified too large; if J   »1.0, the 

errors are too small or erroneous data 

are being assimilated. Figure 6a shows 

an eight-month time series of daily 

Jmin diagnostics computed for selected 

analysis variables in the Atlantic basin 

of the global HYCOM/NCODA system. 

For the three-dimensional temperature 

and SST analysis variables, Jmin values 

are close to one during the first four 

months of the assimilation, but slowly 

drift to values less than one in the last 

half of the assimilation. For altimeter 

SLA and synthetic temperature profiles 

(Figure 6b), however, the Jm.n diagnostics 

indicate that the error variances assigned 

to these data types are clearly incorrect. 

For profile observing systems, Figure 6b 

shows that error variances specified 

for Argo float temperatures are nearly 
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correct, while the J    diagnostics for 
'mm © 

XBT, CTD, and fixed buoys show a large 

amount of day-to-day fluctuation. The 

daily fluctuations of XBT, CTD, and 

buoy diagnostics are likely due to the fact 

that the actual forecast background error 

has significant variations, while the error 

variances specified in the assimilation 

may be correct on average but not in 

specific situations. This problem is most 

apparent for XBT and CTD observing 

systems, which sample sporadically in 

both space and time. Argo, on the other 

hand, is a global observing array with 

more than 300 floats surfacing around 

the globe each day. The consistency of 

the Argo sampling pattern likely helps 

maintain the consistency of the tempera- 

ture background error variances in the 

HYCOM/NCODA assimilation. 

NEMOVAR 

A cycled 3DVAR experiment using 

a global version of NEMOVAR has 

been conducted for the 20-year period 

1987-2006. The assimilated data are 

T and S profiles from the ENACT/ 

ENSEMBLES quality-controlled data- 

base (Ingleby and Huddleston, 2007). 

The surface forcing fluxes are derived 

from ERA40. Results from the experi- 

ment are summarized in Figure 7, which 

shows the global mean and RMS of the 

model fit to the T and S data. The control 

analysis, produced without assimilating 

data, is too warm and too salty compared 

to observations (thin red curves). The 

assimilation improves the mean and RMS 

fit to the data both in the analysis and 

background, the fit for the former being 

somewhat better, as expected. Note that 

the fit to the data achieved by the 3DVAR 

analysis is degraded with the Incremental 

Analysis Updates (IAU) procedure, with 
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Figure 7. Vertical profiles of the 1988-2006 time-mean (thin curves) and RMS (thick curves) 
of the globally averaged model-minus observation differences for temperature (left panel) 

and salinity (right panel) in a 1° x 1° global NEMO configuration. The display shows statistics 

from a control experiment in which no profile data are assimilated (red solid curve) and from 

a 3DVAR (NEMOVAR) experiment. For the 3DVAR experiment, the statistics are shown for the 

background-minus-observations (green dashed curve labeled "Outer"), the analysis-minus- 

observations after minimization (pink dotted curve labeled "Inner"), and the analysis minus 

observations after IAU (blue dashed curve). 

the model-data fit after IAU lying in 

between the 3DVAR analysis residual 

and the innovation. This property of IAU 

achieves temporal smoothness in the 

analyses at the expense of degrading the 

fit to the data, especially near the begin- 

ning of the assimilation window. 

TOPAZ 

Figure 8 shows the forecast skills for 

sea ice in the Barents Sea; the forecast 

does slightly better than persistence and 

a larger reduction is attained by data 

assimilation, which reduces the error 

by 20% at each analysis. The residual 

SLA error in the North Atlantic after 

assimilation is between 10 and 15 cm, 

which is, in part, the result of a seasonal 

trend. It is unlikely that surface forcing 

alone is the cause of these errors, because 

surface forcing variability should have 

been captured in the ensemble-derived 

background error covariance matrix. 

Rather, the SLA bias may indicate a too- 

coarse vertical resolution of the model 

and an underestimation of the thermal 

expansion effects. 

r U niRF PLANS 

A number of GODAE systems plan to 

upgrade to more advanced data assimi- 

lation schemes in the coming years. 
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Figure 8. Performance of the TOPAZ data assimilation system, (a) Forecast skills of ice concentrations in the Barents Sea on average for the period 

April to September 2007; blue is the forecast, red is persistence, and green the analysis, (b) Statistics of residual errors of sea level anomaly in the 

North Atlantic Drift from April 2007 to February 2008; alternate weeks are drawn in different colors to highlight the assimilation steps. 

BODAS will move to a hybrid EnOI/ 

EnKF scheme, FOAM and NCODA 

will implement 3DVAR schemes, 

MOVE/MRI.COM and NEMOVAR will 

both be developed into 4DVAR schemes, 

and ECCO-JPL plans to combine the 

filter/smoother estimates with the ECCO 

4DVAR estimates. Significant improve- 

ment to the statistical parameterizations 

used in the systems is also planned. 

Proper specification of the background 

and observation error covariances has 

been identified as critical for the success 

of GODAE assimilation systems. The 

error covariances must dynamically 

connect all model state variables, evolve 

with time, and accurately reflect the 

proper balance between observation 

errors and forward model errors. This 

problem is an active area of research in 

ocean data assimilation. New observing 

systems, both satellite based and in 

situ, continue to be deployed at the 

national and international level. Use 

of these new observing systems and 

improved use of existing observing 

systems is clearly required in the future. 

Nevertheless, as the GODAE experi- 

ment ends and sustained assimilation 

activities begin, GODAE data assimila- 

tion systems will continue to evolve and 

improve with time. 
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